Adaptive Dynamical Systems for Movement Control

نویسندگان

  • Jonas Buchli
  • Ludovic Righetti
  • Auke Jan Ijspeert
چکیده

We present a dynamical systems approach to adaptive controllers for locomotion control. The approach is based on a rigorous mathematical framework, which is founded on theories of self-organization. Nonlinear dynamical systems are an interesting approach for the on-line generation of trajectories for robots with many degrees of freedom (e.g. legged locomotion). However, designing a nonlinear dynamical system to satisfy a given specification and goal is not an easy task, and, hitherto no methodology exists to approach this problem in a unified way. Nature presents us with satisfactory solutions of coordination of many degrees of freedom. One central feature observed in biological subjects is the ability of the neural systems to exploit natural dynamics of the body to achieve efficient locomotion. In order to be able to exploit the body properties adaptive mechanisms must be at work. Recent work has pointed out the importance of the mechanical system for efficient locomotion. Even more interestingly, such well suited mechanical systems do not need complicated control. Yet, in most approaches, adaptive mechanisms are either missing or they are not based on a rigorous framework, i.e. they are based on heuristics and ad-hoc approaches. Over the last three decades there has been enormous progress in describing movement coordination with the help of Synergetic approaches. This has led to the formulation of a theoretical framework: The Theory of Dynamic Patterns. This framework is mathematically rigorous and at the same time fully operational. However, it does not provide any guidelines for synthetic approaches as needed for the engineering of robots with many degrees of freedom, nor does it directly help to explain adaptive systems. We will show how we can extend the theoretical framework to build adaptive systems. For this purpose, we propose the use of multiscale dynamical systems. The basic idea behind multiscale dynamical systems is that a given dynamical system gets extended by additional slow dynamics of its parameters, i.e. some of the parameters become state variables. We apply the idea to a simple spring-mass hopper system (cf. Figure a). The spring mass system consists of a body with two legs attached by rotational joints. The legs contain spring-damper elements. Therefore, the hopper contains clear natural dynamics in the form of resonant frequencies. By using two adaptive frequency oscillators we devise a simple controller which is able to initiate efficient gallop like locomotion by adapting to the resonant frequencies of the legs. Interestingly, purely local control is sufficient, i.e. the two oscillators do not have to be directly connected, for effective locomotion (cf. Figure b). The only connection is realized by the mechanical structure. Despite the simplicity of the controller and the body, the achieved locomotion is surprisingly complex and natural (cf. Figure c).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distributed Fuzzy Adaptive Sliding Mode Formation for Nonlinear Multi-quadrotor Systems

This paper suggests a decentralized adaptive sliding mode formation procedure for affine nonlinear multi-quadrotor under a fixed directed topology wherever the followers are conquered by dynamical uncertainties. Compared with the previous studies which primarily concentrated on linear single-input single-output (SISO) agents or nonlinear agents with constant control gain, the proposed method is...

متن کامل

A Flexible Link Radar Control Based on Type-2 Fuzzy Systems

An adaptive neuro fuzzy inference system based on interval Gaussian type-2 fuzzy sets in the antecedent part and Gaussian type-1 fuzzy sets as coefficients of linear combination of input variables in the consequent part is presented in this paper. The capability of the proposed method (we named ANFIS2) for function approximation and dynamical system identification is remarkable. The structure o...

متن کامل

Dynamical Behavior of a Rigid Body with One Fixed Point (Gyroscope). Basic Concepts and Results. Open Problems: a Review

The study of the dynamic behavior of a rigid body with one fixed point (gyroscope) has a long history. A number of famous mathematicians and mechanical engineers have devoted enormous time and effort to clarify the role of dynamic effects on its movement (behavior) – stable, periodic, quasi-periodic or chaotic. The main objectives of this review are: 1) to outline the characteristic features of...

متن کامل

Dynamical behavior and synchronization of hyperchaotic complex T-system

In this paper, we introduce a new hyperchaotic complex T-system. This system has complex nonlinear behavior which we study its dynamical properties including invariance, equilibria and their stability, Lyapunov exponents, bifurcation, chaotic behavior and chaotic attractors as well as necessary conditions for this system to generate chaos. We discuss the synchronization with certain and uncerta...

متن کامل

Adaptive Control of Machining Process Using Electrical Discharging Method (EDM) Based on Self-Tuning Regulator (STR)

In order to improve the optimal performance of a machining process, a booster to improve the serve control system performance with high stability for EDM is needed. According to precise movement of machining process using electrical discharge (EMD), adaptive control is proposed as a major option for accuracy and performance improvement. This article is done to design adaptive controller based o...

متن کامل

Synchronization criteria for T-S fuzzy singular complex dynamical networks with Markovian jumping parameters and mixed time-varying delays using pinning control

In this paper, we are discuss about the issue of synchronization for singular complex dynamical networks with Markovian jumping parameters and additive time-varying delays through pinning control by Takagi-Sugeno (T-S) fuzzy theory.The complex dynamical systems consist of m nodes and the systems switch from one mode to another, a Markovian chain with glorious transition probabili...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005